Supersilylated Tetraphosphene Derivatives $M_2[t-Bu_3SiPPPPSi-t-Bu_3]$ (M = Li, Na, Rb, Cs) and Ba[$t-Bu_3SiPPPPSi-t-Bu_3$]: Reactivity and Cis—Trans Isomerization Andreas Lorbach,[†] Andor Nadj,[†] Sandor Tüllmann,[†] Franz Dornhaus,[†] Frauke Schödel,[†] Inge Sänger,[†] Günter Margraf,[†] Jan W. Bats,[‡] Michael Bolte,[†] Max C. Holthausen,[†] Matthias Wagner,[†] and Hans-Wolfram Lerner*,[†] Institut für Anorganische Chemie and Institut für Organische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany Received August 22, 2008 The tetraphosphenediides $M_2[t-Bu_3SiPPPPSi-t-Bu_3]$ (M = Li, Na, K) were accessible by the reaction of P_4 with the silanides M[Si-t-Bu₃] (M = Li, Na, K), whereas M₂[t-Bu₃SiPPPPSi-t-Bu₃] (M = Rb, Cs) were obtained from the reaction of RbCl and CsF with Na₂[t-Bu₃SiPPPPSi-t-Bu₃]. ³¹P NMR experiments revealed that, in tetrahydrofuran, Na₂[t-Bu₃SiPPPPSi-t-Bu₃] adopts a cis configuration. However, treatment of Na₂[t-Bu₃SiPPPPSi-t-Bu₃] with 18crown-6 led to the formation of [Na(18-crown-6)(thf)₂]₂[t-Bu₃SiPPPPSi-t-Bu₃] that possesses a trans configuration in the solid state. The ion-separated tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[t-Bu₃SiPPPPSi-t-Bu₃] was analyzed using X-ray crystallography (monoclinic, space group P2₁/n). The reaction of Na₂[t-Bu₃SiPPPPSi-t-Bu₃] with Bal₂ gave, conveniently, the corresponding barium derivative Ba[t-Bu₃SiPPPPSi-t-Bu₃]. However, addition of AuI to the tetraphosphenediide Na₂[t-Bu₃SiPPPPSi-t-Bu₃] yielded 1,3-diiodo-2,4-disupersilyl-cyclotetraphosphane (monoclinic, space group C2/c), which is an isomer of disupersilylated diiodotetraphosphene. A further isomeric derivative of disupersilylated tetraphosphene, the 3,5-disupersilyl-2,2-di-tert-butyl-2-stanna-bicyclo[2.1.01.4]pentaphosphane, which possesses a phosphanylcyclotriphosphane structure, was obtained by the reaction of Na₂[t-Bu₃SiPPPPSi-t-Bu₃] with t-Bu₂SnCl₂. Calculations revealed that the acyclic cis and trans isomers of the dianions [HPPPPH]²⁻ and [H₃SiPPPPSiH₃]²⁻ are thermodynamically more stable than the cyclic isomers with a phosphanylcyclotriphosphane or a cyclotetraphosphane structure. However, the neutral cyclic isomers of H₄P₄ and H₂(H₃Si)₂P₄ represent more stable structures than the cis- and trans-tetraphosphenes H₂P-P=P-PH₂ and (H₃Si)HP-P=P-PH(SiH₃), respectively. In addition, the molecular orbitals (MOs) of the silvlated cis- and trans-tetraphosphene dianions of [H₃SiPPPPSiH₃]²⁻, which are comparable with those of the ion-separated supersilylated tetraphosphenediide [t-Bu₃SiPPPPSi-t-Bu₃]²⁻, show the highest occupied antibonding π^* MO (HOMO). The HOMO is represented by the $(p_z-p_z+p_z-p_z) \pi^* MO.$ # Introduction The nitrogen compounds diazene HN=NH, triazene HN=N-NH₂, 2-tetrazene H₂N-N=N-NH₂, and their corresponding silyl derivatives with NN double bonds have been extensively studied. ¹⁻¹⁰ In this context, it was reported that the unsaturated nitrogen—hydrogen compounds are temper- ature-sensitive (e.g., decomposition temperatures: -180 °C (HN=NH), -30 °C (*trans*-H₂N-N=N-NH₂)).^{2,4} It was discovered that especially triazene HN=N-NH₂ and *cis*-2-tetrazene H₂N-N=N-NH₂ are very unstable (decomposition temperatures below -200 °C).^{1,3} Generally, it was proved that their silyl derivatives are thermodynamically more stable than the unsaturated nitrogen—hydrogen compounds.⁴⁻¹⁰ In the course of our investigation into tetrazenes, we were able to isolate several silylated tetrazene derivatives with cis configuration.⁶⁻⁸ Up to now, knowledge about the chemistry of related unsaturated phosphorus compounds is rather ^{*} To whom correspondence should be addressed. E-mail: lerner@chemie.uni-frankfurt.de. [†] Institut für Anorganische Chemie. Fax: +49-69798-29260. [‡] Institut für Organische Chemie. ^{(1) (}a) Wiberg, N. Adv. Organomet. Chem. 1984, 23, 131. (b) Wiberg, N. Adv. Organomet. Chem. 1985, 24, 179. limited. In 1992, the synthesis and structure of the first structurally characterized tetraphosphene derivative with a P_4 chain were described (Figure 1). The tetraphosphene $\bf A$ was prepared from Li[(OC)₅CrP(SiMe₃)₂] and 1,2-dibromoethane in dimethoxyethane. In 2005, P. P. Power and coworkers reported on the reaction of P_4 with dithallene (TlAr)₂ (Ar = C_6H_3 -2,6- $(C_6H_3$ -2,6-i-Pr₂)₂), which cleanly led to the formation of the tetraphosphene $\bf B$. Recently, in several reports, information about the reactivity of P_4 toward nucleophiles has been documented. Recently in this context, the tetraphosphene compounds $\bf C$ and $\bf D$ were synthesized from reactions of white phosphorus with the amino carbenes CXY and CY'₂, respectively (Figure 1). - (2) (a) Wiberg, N.; Fischer, G.; Bachhuber, H. Chem. Ber. 1974, 107, 1456. (b) Wiberg, N.; Fischer, G.; Bachhuber, H. Z. Naturforsch. 1979, 84b, 1385. (c) Wiberg, N.; Fischer, G.; Bachhuber, H. Angew. Chem., Int. Ed. Engl. 1977, 16, 780. - (3) Hayon, E.; Simic, M. J. Am. Chem. Soc. 1972, 94, 42. - (4) (a) Wiberg, N.; Bayer, H.; Bachhuber, H. Angew. Chem., Int. Ed. Engl. 1975, 14, 177–178. (b) Veith, M. M.; Schlemmer, G. Z. Anorg. Allg. Chem. 1982, 494, 7. - (5) (a) Wiberg, N.; Joo, W.-Ch.; Uhlenbrock, W. Angew. Chem. 1968, 80, 661. (b) Wiberg, N.; Uhlenbrock, W. J. Organomet. Chem. 1974, 70, 239. (c) Wiberg, N.; Uhlenbrock, W. Angew. Chem. 1970, 9, 70–71. (d) Wiberg, N.; Bayer, H.; Meyers, R. Chem. Ber. 1979, 112, 2718. (e) Veith, M. Acta Crystallogr., Sect. B 1975, 31, 678. - (6) Lerner, H.-W.; Bolte, M.; Wiberg, N. J. Organomet. Chem. 2002, 649, 246 - (7) Lerner, H.-W.; Wiberg, N.; Polborn, K. Z. Naturforsch. 2002, 57b, 1199–1206. - (8) Lerner, H.-W.; Wiberg, N.; Bats, J. W. J. Organomet. Chem. 2005, 690, 3898. - (9) Lerner, H.-W.; Sänger, I.; Schödel, F.; Polborn, K.; Bolte, M.; Wagner, M. Z. Naturforsch. 2007, 62b, 1285. - (10) (a) Wiberg, N. Coord. Chem. Rev. 1997, 163, 217. (b) Wiberg, N.; Karampatses, P.; Kühnel, E.; Veith, M.; Huch, V. Z. Anorg. Allg. Chem. 1988, 562, 91. - (11) Fritz, G.; Layher, E.; Krautscheid, H.; Mayer, B.; Matern, E.; Hönle, W.; v. Schnering, H. G. Z. Anorg. Allg. Chem 1992, 611, 56. We have discovered that phosphide formation of P₄ degradation with the silanides M[Si-t-Bu₃] (M = Na, K) and Na[SiPh-t-Bu₂] depends strongly on the stoichiometry and solvent. 14-19 Using the reactants in molar ratios from 1:2 to 1:4, as shown in Scheme 1, different products were formed: (i) The tri-tert-butylsilylated (supersilylated) tetraphosphenediides $M_2[1]$ (M = Na, K) were obtained from the reaction of P_4 and $M[Si-t-Bu_3]$ (M = Na, K) in a molar ratio of 1:2 in THF. 14,15 (ii) The supersilylated octaphosphides M₄[2] (M = Na, K), however, were also synthesized in a 1:2 stoichiometry, but in weakly polar solvents (heptane, t-BuOMe, etc.). 14,15 (iii) The synthesis of the supersilylated tetraphosphides $M_3[3]$ (M = Li, Na) was achieved by the reaction of P_4 with the silanides M[Si-t-Bu₃] (M = Li, Na) in a 1:3 stoichiometry in benzene; however, in THF, the M₃[3] compounds (M = Li, Na) are unstable, and, thereby, (iv) M[4] and $M_2[PSi-t-Bu_3]$ (M = Li, Na) were formed. ¹⁶ (v) - (12) Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem., Int. Ed. 2005, 44, 7729. - (13) (a) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052. (b) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007, 129, 14180. - (14) Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber. 1997, 130, 135. - (15) Lerner, H.-W.; Bolte, M.; Karaghiosoff, K.; Wagner, M. Organometallics 2004, 23, 6073. - (16) Lerner, H.-W.; Wagner, M.; Bolte, M. Chem. Commun. 2003, 990. - (17) Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 1932. - (18) Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch. 1998, 53b, 1004. - (19) Lerner, H.-W. Coord. Chem. Rev. 2005, 249, 781. - (20) Chan, W. T. K.; Garcia, F.; Hopkins, A. D.; Martin, L. C.; McPartlin, M.; Wright, D. S. Angew. Chem., Int. Ed. 2007, 46, 3084. - (21) Damrauer, R.; Pusede, S. E.; Staton, G. M. Organometallics 2008, 27, 3399. **Figure 1.** Derivatives of 2-tetraphosphene. Ar = C_6H_3 -2,6- $(C_6H_3$ -2,6-i- Pr_2)₂; Dipp = 2,6-i- Pr_2 C₆H₃. At last, the pentaphosphides $M_2[5]$ could be synthesized by degradation of the corresponding octaphosphides $M_4[2]$ with M[Si-t-Bu₃] (M = Na, K).¹⁷ However, the dimeric sodium supersilylated pentaphosphide $\{Na_2[5]\}_2$ was directly accessible by treating P_4 with 4 equiv of the sodium silanide Na(thf)₂[Si-t-Bu₃] in benzene.¹⁷ In contrast to the reactions of P_4 with the silanides M[Si-t-Bu₃]^{19,22} (M = Li, Na) and Na[SiPh-t-Bu₂]^{19,23} in a 1:3 stoichiometry that gave the tetraphosphides $M_3[3]$ (M = Li, Na) and Na₃[P₄(SiPh-t-Bu₂)₃],¹⁶ treatment of P₄ with 3 equiv of K[Si-t-Bu₃] in THF first led to the formation of K₂[1] and K₄[2].¹⁵ However, further equivalents of potassium silanide K[Si-t-Bu₃] caused the decomposition of the tetraphosphenediide K₂[1]; thereby, K[4] and K₂[PSi-t-Bu₃] were formed.¹⁵ Therefore, the potassium tetraphosphide K₃[3] is yet unknown. Very recently, we have shown that the triphosphenide Na[4]^{16,24} can be converted into Cs[4] by the metathesis reaction between Na[4] and CsF in THF (Scheme 2).²⁵ Transition-metal phosphanides were also available by salt metathesis. We synthesized the silver phosphanides $\{Ag_2[PSi-t-Bu_3]\}_8^{26}$ and $\{Ag_2[5]\}_2^{17}$ by reaction of AgOCN with the sodium phosphanides Na₂[PSi-t-Bu₃] and Na₂[5], respectively (Scheme 2).^{17,26} In this paper, we present the synthesis and characterization of the supersilylated alkali-metal tetraphosphenediides $M_2[1]$ (M=Li, Na, Rb, Cs) and Ba[1]. With this selection of alkali and alkaline-earth-metal counterions, it is possible to study the tetraphosphene dianion $[1]^{2-}$ systematically by NMR
spectroscopy. The supersilylated tetraphosphenediide also displays interesting chemical properties. Reactions of $Na_2[1]$ **Scheme 2.** Synthesis of Supersilylated Phosphides by Salt Metathesis Reaction with AuI, BH₃, AlMe₃, and *t*-Bu₂SnCl₂ give us the opportunity to investigate its reactivity and to decipher trends in its coordination behavior. In addition, calculations allow insight into constitutional isomerizations of tetraphosphene derivatives. ### **Results and Discussion** **Synthesis.** The lithium tetraphosphenediide Li₂[1] was prepared by the reaction of P₄ with the silanide Li(thf)₃[Sit-Bu₃]⁹ in a molar ratio of 1:2 in THF by a synthetic route analogous to that of $M_2[1]$ (M = Na, K). As we noted previously, the cesium silanide Cs[Si-t-Bu₃] appears to be unstable in THF at room temperature. We observed that, when t-Bu₃SiBr was treated with an excess of cesium metal in tetrahydrofuran at room temperature, the cesium enolate Cs[OCH=CH₂] and the supersilane t-Bu₃SiH formed, rather than Cs[Si-t-Bu₃].²⁵ Therefore, we decided to synthesize the tetraphosphenediides $M_2[1]$ (M = Rb, Cs) and the barium derivative Ba[1] by the metathesis reaction between Na₂[1] and the corresponding metal halides in THF. NMR spectroscopy confirmed the structures of the tetraphosphenediides $M_2[1]$ (M = Rb, Cs) and Ba[1]. Moreover, ³¹P NMR experiments revealed that, in THF, the sodium tetraphosphenediide Na₂[1] possesses a cis configuration. However, treatment of Na₂[1] with 18-crown-6 led to the formation of the ion-separated trans-tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1]. The tetraphosphenediide [Na(18-crown-6)-(thf)₂]₂[1] was analyzed using X-ray crystallography. In contrast to [Na(18-crown-6)(thf)₂]₂[1], the structure of thallium tetraphosphenediide B reveals a planar dianionic tetraphosphene core with a cis configuration that is complexed to Tl ions disposed equidistant above and below the P₄array. On the one hand, metal exchange reactions can easily be carried out between Na₂[1] and alkali-metal halides, as well ⁽²²⁾ Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Schuster, H.; Nöth, H.; Krossing, I.; Schmidt-Ameluxen, M.; Seifert, T. J. Organomet. Chem. 1997, 524, 1. ^{(23) (}a) Lerner, H.-W.; Scholz, S.; Bolte, M.; Wagner, M. Z. Anorg. Allg. Chem. 2004, 630, 443. (b) Lerner, H.-W.; Scholz, S.; Bolte, M. Z. Anorg. Allg. Chem. 2001, 627, 1638. ⁽²⁴⁾ Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Fenske, D.; Baum, G.; Dransfeld, A.; Schleyer, P. v. R. Eur. J. Inorg. Chem. 1998, 833. ⁽²⁵⁾ Lerner, H.-W.; Sänger, I.; Schödel, F.; Lorbach, A.; Bolte, M.; Wagner, M. Dalton Trans. 2008, 787. ⁽²⁶⁾ Lerner, H.-W.; Margraf, G.; Bats, J.; Wagner, M. Chem. Commun. 2005, 4545. **Scheme 3.** Synthesis of Cyclotetraphosphane **6** by Reaction of Na₂[*t*-Bu₃SiPPPPSi-*t*-Bu₃] with AuI (i) +2 AuI, -2 "NaAu", in THF at room temperature. as BaI₂, and on the other hand, the addition of AuI to tetraphosphenediide Na₂[1] surprisingly yielded 1,3-diiodo-2,4-disupersilyl-cyclotetraphosphane **6**, which can be considered as an isomer of disupersilylated diiodotetraphosphene, as shown in Scheme 3. This reaction occurs quantitatively, as determined by ³¹P NMR spectroscopy, with the signals of the tetraphosphenediide Na₂[1] ³¹P nuclei disappearing completely. **Reactivity.** The alkali-metal tetraphosphenediides $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1] are sensitive to protonolysis. Competitive protonolysis of supersilylated sodium phosphides reveals the following basicity: Na[4] < $Na_2[1] < Na_4[2] \sim Na_3[3] \sim Na_2[5] \sim Na[PHSi-t-Bu_3] < 0$ Na₂[PSi-t-Bu₃]. When treated with an excess of trifluoroacetic acid in C₆D₆, the tetraphosphenediides are converted into supersilyl phosphane t-Bu₃SiPH₂²⁷ and, up to now, not exactly identified polyphosphanes. However, treatment of the sodium tetraphosphenediide Na₂[1] with the Lewis acids BH₃ and AlMe₃ gives more insight into the reaction behavior of Na₂[1] toward electrophiles than its protonolysis. At first, the reaction of Na₂[1] with BH₃ and AlMe₃ led to the formation of the corresponding complexes 7(BH₃)₂ and 7(AlMe₃)₂, respectively, as determined by mass spectrometry and ³¹P NMR spectroscopy. Obviously, at temperatures higher than −50 °C, the adduct 7(BH₃)₂ was transformed into 8, as shown in Scheme 4. The coupling constants of 8 and the contact-ion pair Na₂[1] have nearly the same values (Figure 4). The ¹¹B NMR spectrum of the reaction between Na₂[1] and BH₃ shows a broad signal that can be assigned to 8 and a signal with a quintet pattern. The quintet signal reveals a chemical shift, as well as BH coupling constants that are characteristic for Na[BH₄]. In addition, compound 8 consists apparently of a BP₄ ring with a bridging BH₂ unit, as shown in Scheme 4. It is interesting to note that reaction products **7**(AlMe₃)₂ and **8** are thermolabile compounds. After 2 days at room temperature, in the ³¹P NMR spectrum of the reaction between Na₂[1] and BH₃, we observed several new resonances in the range of saturated P atoms, whereas the signals of "unsaturated" P nuclei from **8** have disappeared (e.g., (*t*- $Bu_3Si)_3P_7$, ²⁸ (t-Bu₃Si)₂P₄²⁹). The thermolysis reaction of 7(AlMe₃)₂ occurs quantitatively after 1 week, as determined by ³¹P NMR spectroscopy, with the signals of 7(AlMe₃)₂ disappearing completely. The chemical shifts in the ³¹P NMR spectrum are in the range of polyphosphanes; however, we could identify only a few products herein (e.g., t-Bu₃SiPHMe, t-Bu₃SiPMe₂). Treatment of Na₂[1] with t-Bu₂SnCl₂ led to the formation of the phosphanylcyclotriphosphane 9, a further constitutional isomer of the supersilylated tetraphosphene (Scheme 5). In contrast to analogous nitrogen compounds that consist of N₄ chains in cis or trans configuration, neutral 2-tetraphosphenes of the type t-Bu₃SiRP-P=P-PR'Si-t-Bu₃, with covalent RP and R'P bonds, seem to be less stable. On the one hand, tetraphosphenes t-Bu₃SiRP-P=P-PR'Si-t-Bu₃ with bulky R and R' substituents undergo isomerization reactions with the formation of isolable phosphanylcyclotriphosphane and cyclotetraphosphane derivatives (e.g., 9 (R = R' = t-Bu₂Sn), 6 (R = I, R' = I), Schemes 3 and 5), and on the other hand, decomposition of the protonated disupersilylated *cis*- and *trans*-tetraphosphene (R = H, R' = H) occurs in the formation of t-Bu₃SiPH₂. In this context, it is interesting to note that the decomposition of cis- and transtetraphosphenes t-Bu₃SiHP-P=P-PHSi-t-Bu₃ looks very similar to tetrazene degradation. The alkali-metal tetraphosphenediides $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1] can easily be oxidized. Generally, treatment of $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1] with TCNE gives the bicyclo[1.1.0]tetraphosphane (t-Bu₃Si)₂P₄. ²⁹ This oxidation is accompanied by a color change from redpurple to pale yellow. The oxidation to the bicyclo[1.1.0]tetraphosphane (t-Bu₃Si)₂P₄ can, however, be reversed by reduction with sodium.²⁹ When the bicyclo[1.1.0]tetraphosphane (t-Bu₃Si)₂P₄ is exposed to an excess of sodium metal at room temperature, the dark purple color appears and the NMR signals corresponding to the tetraphosphene dianion are observed. In weakly polar solvents, the tetraphosphenediides $M_2[1]$ (M = Li, Rb, Cs) and Ba[1] dimerize to $M_4[2]$ (M = Li, Rb, Cs) and Ba₂[2], as the tetraphosphenediides $M_2[1]$ (M = Na, K) do (Scheme 1). In summary, the related $M_2[1]$ (M = Li, Rb, Cs) and Ba[1] possess nearly the same chemical properties as we have found for $M_2[1]$ (M = Na, K). 14,15,30 **NMR Spectra.** When considering the ²⁹Si and ³¹P NMR spectra of the alkali-metal tetraphosphenediides $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1], no certain general trends can be observed. However, the NMR spectra of $M_2[1]$ (M = Li, Rb, Cs) and Ba[1] resemble those of the sodium and potassium tetraphosphenediides $M_2[1]$ (M = Na, K). ^{15,16} The ³¹P{¹H} NMR spectra of the alkali and alkaline-earth-metal tetraphosphenediides show multiplets with the splitting pattern of an AA'XX' spin system. The signals of the ⁽²⁷⁾ Alternative synthesis of t-Bu₃SiPH₂ was achieved by the reaction of t-Bu₃SiO₃SCF₃ with LiPH₂. Wiberg, N.; Schuster, H. Chem. Ber. 1991, 124, 93. ⁽²⁸⁾ Kovács, I.; Baum, G.; Fritz, G.; Fenske, D.; Wiberg, N.; Schuster, H.; Karaghiosoff, K. Z. Anorg. Allg. Chem. 1993, 619, 453. ⁽²⁹⁾ Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K. Z. Naturforsch. 2002, 57b, 1027. ^{(30) (}a) Sänger, I.; Schödel, F.; Bolte, M.; Wagner, M.; Lerner, H.-W. Unpublished work. (b) Wörner, A. Ph.D. Thesis, University of Munich, Munich, Germany, 1998. **Scheme 4.** Reaction of Na₂[t-Bu₃SiPPPPSi-t-Bu₃] with BH₃ and AlMe₃ $$\begin{array}{c|c} Na & Na \\ P-SitBu_3 \\ \hline \end{array}$$ (i) +2 ER₃, ER₃ = BH₃ in THF at -80°C; ER₃ = AlMe₃ in THF at -78°C; (ii) Na[BH₄], ER₃ = BH₃. Scheme 5. Synthesis of Phosphanylcyclotriphospane 9 $$tBu_3Si-P$$ $P-SitBu_3$ $P-SitBu_3$ $P-SitBu_3$ $P-SitBu_3$ $P-SitBu_3$ $P-SitBu_3$ # (i) $+ tBu_2SnCl_2$, -2NaCl, in THF at room temperature. "unsaturated" P atoms tend to be shifted downfield in tetraphosphenediides containing the heavier alkali-metal atoms, with the exception of Cs, but the change in chemical shift is small, making such trends more difficult to discern (Figure 2). In addition, the signals of the phosphorus nuclei P(2) and P(3) are shifted downfield as the metal is changed from Cs to Ba. The ³¹P shifts of P(1) and P(4) of M₂[1] (M = Li, Na, K, Rb, Cs) and Ba[1] range from $\delta = -52.9$ to 19.0. As shown in Figure 2, the signals of the P(2) and P(3) nuclei of the tetraphosphenediides $M_2[1]$ (M = Rb, Cs) and Ba[1] are broadened, as well as those for P(1) and P(4), due to the coupling of P(1) and P(4) with Rb, Cs, and Ba, respectively, whereas the spectrum of the contact-ion pair Na₂[1] shows only a relative broad signal for the phosphidic P atoms P(1) and P(4). This can be explained by the fact that in $M_2[1]$ (M = Rb, Cs) and Ba[1], the larger cations Rb⁺, Cs⁺, and Ba²⁺ are
coordinated to all P atoms of the disupersilylated tetraphosphene dianion, whereas the Na⁺ cations of Na₂[1] are only in contact with P(1) and P(4). In contrast to ³¹P NMR spectra of the tetraphosphene derivatives **C** and **D** that reveal two sets of signals, suggesting an equilibrium of *cis*- and *trans*-tetraphosphene isomers in solution, we found in the ³¹P NMR spectrum of the ion-separated tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1], as well as in that of the contact-ion pair Na₂[1], only one set of signals. Further information about the bonding situation in alkalimetal tetraphosphenediides $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1] may be obtained from the PP coupling constants. It is interesting to note that the ^{31}P NMR spectra of the ion- **Figure 2.** Observed and calculated ³¹P NMR spectra of [Na(18-crown-6)(thf)₂]₂[1] and M₂[1] (M = Li, Na, Rb, Cs). Signals of the "unsaturated" nuclei P(2) and P(3) of [t-Bu₃SiP(1)P(2)P(3)P(4)Si-t-Bu₃]²⁻ are drawn. Chemical shifts and coupling constants [Hz] of tetraphosphenediides. Li₂[1]: δ 394.2, -52.9, ${}^{1}J_{P(2)P(3)} = -500.5$, ${}^{1}J_{P(1)P(2)} = -426.2$, ${}^{2}J_{P(1)P(3)} = -29.8$, ${}^{3}J_{P(1)P(4)} = 198.3$. Rb₂[1]: δ 419.9, -35.4. Cs₂[1]: δ 400.1, -44.4. **Figure 3.** A comparison of the 31 P NMR spectra of [Na(18-crown-6)(thf)₂]₂[1] and the contact-ion pair Na₂[1]. Chemical shifts and coupling constants [Hz] of [Na(18-crown-6)(thf)₂]₂[1]: δ 390.1, -34.7, $^{1}J_{P(2)P(3)} = -518.7$, $^{1}J_{P(1)P(2)} = -451.8$, $^{2}J_{P(1)P(3)} = -28.7$, $^{3}J_{P(1)P(4)} = 126.7$. Chemical shifts and coupling constants [Hz] of Na₂[1]: δ 400.0, -45.2, $^{1}J_{P(2)P(3)} = -502.1$, $^{1}J_{P(1)P(2)} = -432.3$, $^{2}J_{P(1)P(3)} = -34.2$, $^{3}J_{P(1)P(4)} = 185.4$. separated tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] and of the contact-ion pair Na₂[1] reveal different coupling constants. As listed in the caption of Figure 3, the values of coupling constants ${}^{1}J_{P(2)P(3)}$ and ${}^{1}J_{P(1)P(2)}$ of [Na(18-crown-6)(thf)₂]₂[1] are significantly higher than those of the contaction pair Na₂[1], but the values of both tetraphosphenediides lie in the double bond region. Due to through-space coupling and s-cis/s-trans isomerization, the value of the constant ${}^{3}J_{P(1)P(4)}$ of [Na(18-crown-6)(thf)₂]₂[1] is remarkably large. This predicts a bonding situation as found in 1,3-butadiene. However, the increase in the ${}^{3}J_{P(1)P(4)}$ coupling constants going from [Na(18-crown-6)(thf)₂]₂[1] to the contact-ion pair Na₂[1] is significant and is presumably caused by a different s-cis-/ s-trans rotamer relation of the contact-ion pair $Na_2[1]$ and $[Na(18-crown-6)(thf)_2]_2[1]$. Generally, the trend of the coupling constant values of alkali-metal tetraphosphenediides $M_2[1]$ (M = Li, Na, K) is comparable with the tendency of the CC coupling constants of 1,3-butadiene ($H_2C(1)=C(2)H$ HC(3)=C(4)H₂: ${}^{1}J_{C(2)C(3)} = 53.7 \text{ Hz}, {}^{1}J_{C(1)C(2)} = 68.8 \text{ Hz},$ ${}^{2}J_{C(1)C(3)} = <1 \text{ Hz}, {}^{3}J_{C(1)C(4)} = 9.1 \text{ Hz}).^{31} \text{ In contrast to the}$ apparent constants of alkali-metal tetraphosphenediides M₂[1] (M = Li, Na, K), the ${}^{3}J_{P(1)P(4)}$ value of the tetraphosphene A was less than 1 Hz. This result is in correlation with the molecular structure of tetraphosphene derivatives. Large ${}^{3}J_{P(1)P(4)}$ values suggest the existence of s-cis rotamers or cis isomers, whereas small coupling constants correlate with a trans configuration of tetraphosphene derivatives. Therefore, ${}^{3}J_{\mathrm{P(1)P(4)}}$ coupling constants are valuable diagnostic tools for an assessment of s-cis/s-trans isomerization of P₄ chains. On the one hand, the coupling constants of the product of the reaction between Na₂[1] and BH₃ (8) and the contaction pair Na₂[1] possess nearly the same values (e.g., Na₂[1]: ${}^3J_{P(1)P(4)} = 185.4$ Hz. 8: ${}^3J_{P(1)P(4)} = 188.9$ Hz. Na₂[1]: ${}^1J_{P(2)P(3)} = -502.1$ Hz. 8: ${}^1J_{P(2)P(3)} = -507.0$ Hz), and on the other **Figure 4.** ³¹P NMR spectra of the reaction of Na₂[1] with BH₃. Chemical shifts and coupling constants [Hz] of **8**: δ 409.7, -35.0, $^1J_{P(2)P(3)} = -507.0$, $^1J_{P(1)P(2)} = -429.9$, $^2J_{P(1)P(3)} = -35.4$, $^3J_{P(1)P(4)} = 188.9$. **Figure 5.** ³¹P NMR spectrum of the adduct of Na₂[1] with AlMe₃. Chemical shifts and coupling constants [Hz] of $7(\text{AlMe}_3)_2$: δ 409.2, ${}^1J_{P(2)P(3)} = -509.8$, ${}^1J_{P(1)P(2)} = -434.3$, ${}^2J_{P(1)P(3)} = -3.7$, ${}^3J_{P(1)P(4)} = 162.4$. hand, the ^{31}P NMR spectrum of the AlMe₃ complex $7(AlMe_3)_2$ reveals coupling constants that are similar to those of [Na(18-crown-6)(thf)₂]₂[1] (Figure 5). Therefore, in solution, a cis configuration of 8 seems to be presumable. Due to the coupling of Al with the P(1) and P(4) nuclei, the signal of P(1) and P(4) was not observable in the ^{31}P NMR spectrum of $7(AlMe_3)_2$. As depicted in Figure 4, the ^{31}P NMR spectrum of the reaction mixture of Na₂[1] and BH₃ at -80 °C shows only signals that can be assigned to the starting material Na₂[1], suggesting no adduct formation at this temperature. As expected, the signals of 8 are broad, due to BP coupling, as revealed in the ^{31}P NMR spectrum of the reaction between Na₂[1] and BH₃. The 29 Si NMR spectra of the contact-ion pair Na₂[1] and [Na(18-crown-6)(thf)₂]₂[1], as well as of M₂[1] (M = Li, Na, K, Rb, Cs) and Ba[1], resemble each another. Due to the large coupling constants between P(2)P(3) and P(1)P(4), the 29 Si NMR spectrum of [Na(18-crown-6)(thf)₂]₂[1] consists of a deceptively simple triplet of triplet pattern of an ⁽³¹⁾ Becher, G.; Lüttke, W.; Schrumpf, G. Angew. Chem., Int. Ed. Engl. 1973, 12, 339–340. **Figure 6.** ²⁹Si NMR spectrum of [Na(18-crown-6)(thf)₂]₂[1]. Chemical shifts and coupling constants [Hz] of [Na(18-crown-6)(thf)₂]₂[1]: δ 24.2, ${}^{1}J_{\text{SiP}} + {}^{4}J_{\text{SiP}} = 46.0, {}^{2}J_{\text{SiP}} + {}^{3}J_{\text{SiP}} = 6.5.$ **Figure 7.** 31 P{ 1 H} NMR spectrum of the phosphanylcyclotriphosphane **9**. Chemical shifts and coupling constants [Hz] of **9** (C₆D₆, external TMS): δ -105.3 (m, $^{1}J_{P(1)P(4)} = -280.2$, $^{2}J_{P(2)P(4)} = 74.6$, $^{2}J_{P(3)P(4)} = 16.8$, P(4)), -124.8 (m, $^{1}J_{P(1)P(2)} = -238.7$, $^{1}J_{P(1)P(3)} = -160.4$, P(1)), -180.4 (m, $^{1}J_{P(2)P(3)} = -147.9$, P(3)), -198.2 (m, P(2)). AA'MM'X spin system, as shown in Figure 6. The relative difference in chemical shift of supersilylated tetraphosphene-diides $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1] is generally small, and it is always more pronounced for the ^{31}P signals than for the ^{29}Si signals. In addition, no general trend can be applied to the relative shifts of the ^{29}Si nuclei of $M_2[1]$ (M = Li, Na, K, Rb, Cs) and Ba[1]. The ${}^{31}P\{{}^{1}H\}$ NMR spectrum of cyclotetraphosphane **6** reveals two triplets with the splitting pattern of an A_2X_2 spin system and a coupling constant value of ${}^{1}J_{PP}=226.7$ Hz. The signals of P nuclei of **6** appear at low field in the typical range of P₄-ring compounds (δ 149.0 (PI), -34.9 (PSi-t-Bu₃)). As shown in Figure 7, the chemical shifts of the phosphorus nuclei of the phosphanylcyclotriphosphane **9**, however, appear at high field (δ P(1) -124.8, δ P(2) -198.2, δ P(3) -180.4, δ P(4) -105.3), as was found for δ in 2,4,5-tris(supersily1)bicyclo[2.1.0^{1,3}]pentaphosphane. ^{17,18} The pres- ence of a cyclotriphosphane ring in **9** is indicated by the chemical shift of P(1), P(2), and P(3), as well as by the large and negative coupling constants (${}^{1}J_{\text{P(1)P(2)}} = -238.7$ Hz, ${}^{1}J_{\text{P(1)P(3)}} = -160.4$ Hz, ${}^{1}J_{\text{P(2)P(3)}} = -147.9$ Hz). The direct connection of the P(1) and P(4) center is indicated by the large and negative coupling constant between P(1) and P(4) (${}^{1}J_{\text{P(1)P(4)}} = -280.2$ Hz). The neighborhood of the Sn atom causes large and positive coupling constants (${}^{1}J_{119\text{SnP(4)}} = 946.0$ Hz, ${}^{1}J_{117\text{SnP(4)}} = 905.0$ Hz, ${}^{1}J_{119\text{SnP(3)}} = 628.8$ Hz, ${}^{1}J_{117\text{SnP(3)}} = 600.6$ Hz) between P(3), as well as P(4) and ${}^{117}\text{Sn}$ and ${}^{119}\text{Sn}$, respectively. The resulting PP, ${}^{117}\text{SnP}$, and ${}^{119}\text{SnP}$ coupling constants and ${}^{31}\text{P}$ chemical shifts are summarized in the Experimental Section and the Figure 7 caption. **Crystal Structures.** The molecular structures of the tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] and cyclotetraphosphane 6 are shown in Figures 8 and 9 and Figures S1 and S2 in the Supporting Information. Selected bond lengths and angles are listed in the corresponding figure captions and Table 1. Crystal data and refinement details are given in Table 2. Figure 8 represents the molecular structure of the tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] (monoclinic, P2₁/ n; for selected bond lengths and angles, see Table 1 and Figure 8 caption). The disodium *trans*-tetraphosphenediide crystallizes with a half-molecule of [Na(18-crown-6)(thf)₂]₂[1] and a half-molecule of 18-crown-6 in the asymmetric unit (Figure S1 in the Supporting Information). In contrast to the thallium tetraphosphenediide **B**, the ionseparated sodium tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] possesses a trans configuration, as found in the structure of the lithium complex A. 11 The molecular structure of the tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] shows three short PP bonds, one of 2.126(9) Å and two of 2.133(6) Å, and an almost planar SiPPPPSi skeleton. The PP distances in [Na(18-crown-6)(thf)₂]₂[1] are between PP single and PP double bonds, comparable with those found in the structures of the tetraphosphene derivative \mathbf{B}^{12} (Table 1) and, therefore, longer than PP double bonds found in the structures of tetraphosphenes A^{11} and C^{13} , as well as the PP
bonds in the structures of triphosphenides M[4] (M = Na, K, Cs) (average PP bond lengths in M[4]: 2.096(20) Å (Na), 2.072(2) Å (K), 2.090(3) Å (Cs)). 15,24,25 It is interesting to note that the structure of the tetraphosphene A features one short double bond (2.025(3) Å) in the range of diphosphenes²⁹ and two PP single bonds (2.219(3) Å). 11 The structure of tetraphosphene C reveals shorter PP single bonds compared to those in A and a significantly longer double bond than in A. 13 On the one hand, the PP distances (2.126(9) and 2.133(6) Å) in $[Na(18-crown-6)(thf)_2]_2[1]$ are somewhat longer than those found in diphosphenes³² and the triphosphenides M[4] (M = Na, K, Cs), 15,24,25 and on the other hand, the PP bonds in [Na(18-crown-6)(thf)₂]₂[1] are nearly identical and have lengths shorter than the PP single bonds in polyphosphanes.³² These findings suggest a π system in [Na(18-crown- ^{(32) (}a) Cambridge Structural Database (CSD), version 5.29; with three updates, January 2008; Allen, 2002. (b) Allen, F. H. Acta Crystallogr. 2002, B58, 380. Figure 8. Solid-state structure of [Na(18-crown-6)(thf)₂]₂[1] and one molecule of 18-crown-6. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Si(1)-C(1) = 1.984(16), Si(1)-C(2) = 2.07(3), Si(1)-P(1) = 2.213(6), P(1)-P(2) = 2.133(6), P(2)-P(2)#1 = 2.126(9), Na(1)-O(71) = 2.304(13), Na(1)-O(61) = 2.341(11), Na(1)-O(41) = 2.611(12), Na(1)-O(56) = 2.642(10), Na(1)-O(44) = 2.739(12), Na(1)-O(47) = 2.789(12), Na(1)-O(50) = 2.870(12), Na(1)-O(53) = 2.914(10), C(3)-Si(1)-C(1) = 108.1(10), C(3)-Si(1)-C(2) = 113.4(12), C(1)-Si(1)-C(2) = 107.7(9), C(3)-Si(1)-P(1) = 115.8(6), C(1)-Si(1)-P(1) = 111.7(6), C(2)-Si(1)-P(1) = 99.8(7), P(2)-P(1)-Si(1) = 103.0(3), P(2)#1-P(2)-P(1) = 100.4(3). Symmetry transformations used to generate equivalent atoms: #1 -x + 1, -y, -z + 1; #2 -x + 1, -y + 1, -z + 1. **Figure 9.** Solid-state structure of **6.** Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): I-P(2) = 2.5126(12), P(1)-P(2) = 2.214(3), P(1)-P(2)#1 = 2.214(3), P(1)-Si = 2.3171(15), Si-C(9) = 1.931(9), Si-C(5) = 1.941(4), Si-C(1) = 1.958(8), P(2)-P(1)#1 = 2.214(3), P(2)-P(1)-P(2)#1 = 87.49(7), P(2)-P(1)-Si = 108.94(10), P(2)#1-P(1)-Si = 112.58(10), C(9)-Si-C(5) = 113.1(4), C(9)-Si-C(1) = 112.6(2), C(5)-Si-C(1) = 111.9(4), C(9)-Si-P(1) = 100.8(2), C(5)-Si-P(1) = 115.33(14), C(1)-Si-P(1) = 102.2(2), P(1)-P(2)-P(1)#1 = 84.81(6), P(1)-P(2)-I = 101.69(7), P(1)#1-P(2)-I = 101.76(7) Symmetry transformations used to generate equivalent atoms: #1-x, y, -z+1/2. 6)(thf)₂]₂[1] analogous to that in **B**. In addition, the PP bonds in [Na(18-crown-6)(thf)₂]₂[1] conform formally to a bond order of 1.33, whereas the PP bond length in triphosphenides M[4] (M = Na, K, Cs) formally gives a PP bond order of 1.5. The distance for P–Si-t-Bu₃ of 2.213(6) Å in [Na(18-crown-6)(thf)₂]₂[1] is of a characteristic length for PSi bonds in supersilylated phosphides (mean length of PSi bonds = **Table 1.** Selected Bond Lengths [Å] and Angles [°] for 2-Tetraphosphenes $R_2P-P=P-PR_2$ | | P-P | P=P | P-P-P | |--|----------|----------|-----------| | [Na(18-crown-6)(thf) ₂] ₂ [1] (trans) | 2.133(6) | 2.126(9) | 100.4(3) | | 10 trans- $[HP-P=P-PH]^{2-a}$ | 2.176 | 2.098 | 108.0 | | 11 <i>cis</i> -[HP-P=P-PH] ^{2-a} | 2.158 | 2.090 | 115.3 | | 14 trans- $[H_3SiP-P=P-PSiH_3]^{2-a}$ | 2.176 | 2.090 | 104.9 | | 15 cis- $[H_3SiP-P=P-PSiH_3]^{2-a}$ | 2.162 | 2.085 | 112.7 | | 19 cis -(H ₃ Si)NaP-P=P-PNa(SiH ₃) ^a | 2.173 | 2.106 | 109.70 | | 22 trans- $H_2P-P=P-PH_2^a$ | 2.250 | 2.048 | 101.14 | | 26 trans-(H ₃ Si)HP-P=P-PH(SiH ₃) ^a | 2.210 | 2.054 | 98.70 | | \mathbf{A}^{11} (trans) | 2.219(2) | 2.025(3) | 105.9(1) | | \mathbf{B}^{12} (cis) | 2.143(6) | 2.136(4) | 101.8(1) | | \mathbf{C}^{13} (trans) | 2.191(5) | 2.083(4) | 92.9(2)av | ^a Calculated at MP2/6-31G(d) as part of G3. 2.251 Å). $^{14-19,24-26,32}$ The supersilylated sodium tetraphosphenediide [Na(18-crown-6)(thf)₂]₂[1] displays a PPP angle of 100.4(3)°. As depicted in Figure S1 in the Supporting Information, the structure of [Na(18-crown-6)(thf)₂]₂[1] features long PNa distances (shortest PNa distance = 7.065 Å), suggesting no interaction between the sodium cations and the P atoms of the tetraphosphene dianions. Apparently, in [Na(18-crown-6)(thf)₂]₂[1], the negative charge of the dianion is distributed over the whole P₄ chain, suggesting a decrease of nucleophilicity of P centers of [1]²⁻, compared to that of related supersilylated phosphanides. As shown in Figure 8, the sodium cations in [Na(18-crown-6)(thf)₂]₂[1] are coordinated by eight O atoms of two THF molecules and one 18-crown-6 molecule in a hexagonal bipyramidal fashion. **Table 2.** Crystal Data and Structure Refinement Parameters for $[Na(18\text{-crown-6})(thf)_2]_2[1]$ and 6 | $[Na(18-crown-6)(thf)_2]_2$ | | | |--|--------------------------------|--------------------------------| | | [1]•(18-crown-6) | 6 | | empirical formula | $C_{76}H_{158}Na_2O_{22}Si_2$ | $C_{24}H_{54}I_2P_4Si_2$ | | color | dark violet | yellow | | shape | plate | plate | | fw | 1650.06 | 776.53 | | crystal system | monoclinic | monoclinic | | space group | $P2_1/n$ | C2/c | | a, Å | 16.006(2) | 15.226(5) | | b, Å | 23.823(3) | 8.4316(8) | | c, Å | 16.436(2)) | 26.135(8) | | β , deg | 115.699(10) | 90.40(3) | | volume, Å ³ | 5647.3(12) | 3355.1(15) | | Z | 2 | 4 | | density _{calcd} , Mg/m ³ | 0.970 | 1.537 | | abs coeff μ (Mo K α), mm ⁻¹ | 0.148 | 2.150 | | F(000) | 1800 | 1568 | | crystal size, mm ³ | $0.32 \times 0.24 \times 0.09$ | $0.39 \times 0.20 \times 0.12$ | | θ -range, deg | 2.19 to 25.08 | 0.78 to 32.24 | | index ranges | $-19 \le h \le 18$ | $-19 \le h \le 22$ | | - | $-28 \le k \le 28$ | $-12 \le k \le 12$ | | | $-19 \le l \le 19$ | $-39 \le l \le 33$ | | no. of reflections collected | 40 944 | 28 691 | | no. of independent reflections | 9929 | 5333 | | R(int) | 0.1731 | 0.0951 | | T_{\min} , T_{\max} | 0.9542, 0.9868 | 0.698, 1.000 | | no. of data/restraints/parameter | | 5333/0/156 | | goodness of fit on F^2 | 1.361 | 1.037 | | final R indices $[I > 2\sigma(I)]$,
R1, wR2 | 0.2468, 0.5331 | 0.0514, 0.1154 | | R indices (all data), R1, wR2 | 0.3635, 0.5762 | 0.0740, 0.1237 | | peak/hole, e Å ⁻³ | 0.936 and -0.522 | 2.196 and -2.057 | X-ray quality crystals of 6 were grown from toluene. The phosphane 6 represents the second structurally characterized halogenated cyclotetraphosphane, but the first one with two halogen substituents on the P₄ ring. The cyclotetraphosphane **6** crystallizes in the monoclinic space group C2/c. The fourmembered ring in 6 is puckered with PPPP torsion angles of +29.1 and -29.1° . The PP distance of 2.214(3) Å between the P atoms of the P4 ring is in good agreement with PP distances in other cyclotetraphosphane structures.³² The Si and I substituents are in pseudo-equatorial positions. The P-Si-t-Bu₃ bond distance of 2.317(2) Å is, on the one hand, longer than the PSi distance of 2.253 Å in the diamino(bistrimethylsilyl)cyclotetraphosphane derivative, 33 and on the other hand, it is comparable to those found in supersilylated phosphorus compounds. 15–19,24–26,32 The PI distance of 2.513(1) Å is comparable to values of 2.48-2.49 Å found for related P-I bonds.32 The shortest intramolecular HH distance across the tetraphosphane ring is 2.13 Å, whereas the shortest intramolecular HH distances within the supersilyl groups are between 2.17 and 2.20 Å. The shortest intermolecular contact is a CH···I interaction with a HI distance of 3.30 Å, which is about 0.1 Å longer than the van der Waals contact distance. **Calculations.** The experimental studies described thus far were augmented by accurate quantum chemical calculations at the G3 level on relative isomer stabilities of small molecular models containing the key structural features of tetraphosphene derivatives. Figures 11-15 illustrate the results of calculations concerning structures and relative energies of isomers of the bare dianion $[H_2P_4]^{2-}$, the Figure 10. The π^* MOs of 14 and 15 calculated at the HF/6-311G(d)// B3LYP/6-31G(d) level (HOMO). **Figure 11.** Calculated molecular structures of isomers **10**, **11**, **12**, and **13** of the dianion $[H_2P_4]^{2-}$ with the compound method G3. **Figure 12.** Calculated molecular structures of isomers **14**, **15**, **16**, and **17** of the dianion $[(H_3Si)_2P_4]^{2-}$ with the compound method G3. disilylated dianion $[(H_3Si)_2P_4]^{2-}$, the contact-ion pair $Na_2(H_3Si)_2P_4$, the neutral compound H_4P_4 , and the silylated derivative $H_2(H_3Si)_2P_4$ (i.e., *trans*-2-tetraphosphene dianion $[HPPPPH]^{2-}$ (10), *cis*-2-tetraphosphene dianion $[HPPPPH]^{2-}$ (11), dianion $[H_2P_4]^{2-}$ with phosphanylcyclotriphosphane structure (12), dianion $[H_2P_4]^{2-}$ with cyclotetraphosphane structure (13), *trans*-2-tetraphosphene dianion $[(H_3Si)PPPP-(SiH_3)]^{2-}$ (14), *cis*-2-tetraphosphene dianion $[(H_3Si)PPPP-(SiH_3)]^{2-}$ (15), dianion $[(H_3Si)_2P_4]^{2-}$ with phosphanylcyclotriphosphane structure (16), dianion $[(H_3Si)_2P_4]^{2-}$ with cyclotetraphosphane structure (17), *trans*-2-tetraphosphene contact-ion pair $(H_3Si)NaPPPPNa(SiH_3)$ (18), *cis*-tetraphosphene contact-ion pair $(H_3Si)NaPPPPNa(SiH_3)$ (19), contact- ⁽³³⁾ Schrödel, H.-P.; Nöth, H.; Schmidt-Amelunxen, M.; Schoeller, W.; Schmidpeter, A. Chem. Ber./Recl. 1997, 130, 1801. Figure 13. Calculated molecular structures of isomers 18, 19, 20, and 21 of the contact-ion pair $(H_3Si)_2P_4Na_2$ with the compound method G3. **Figure 14.** Calculated molecular structures of isomers **22**,
23, **24**, and **25** of the neutral compound $[H_4P_4]$ with the compound method G3. **Figure 15.** Calculated molecular structures of isomers **26**, **27**, **28**, and **29** of the neutral compound $[H_2(H_3Si)_2P_4]$ with the compound method G3. ion pair $Na_2(H_3Si)_2P_4$ with phosphanylcyclotriphosphane structure (20), contact-ion pair $Na_2(H_3Si)_2P_4$ with cyclotetraphosphane structure (21), trans-2-tetraphosphene $H_2P-P=P-PH_2$ (22), cis-2-tetraphosphene $H_2P-P=P-PH_2$ (23), the neutral cyclic isomer of H_4P_4 with a phosphanylcyclotriphosphane structure (24), H_4P_4 with cyclotetraphosphane structure (25), trans-2-tetraphosphene (H_3Si) $HP-P=P-PH(SiH_3)$ (26), cis-2-tetraphosphene (H_3Si) $HP-P=P-PH(SiH_3)$ (27), the neutral cyclic isomer of $H_2(H_3Si)_2P_4$ with phosphanylcyclotriphosphane structure (28), and $H_2(H_3Si)_2P_4$ with cyclotetraphosphane structure (29)). Figure 10 exemplarily shows the HOMOs of the silylated tetraphosphene dianions **14** and **15**. These orbitals, which are comparable to those of the ion-separated supersilylated tetraphosphenediide $[1]^{2-}$, largely comprise (P_1, P_2) and (P_3,P_4) antibonding and (P_2,P_3) bonding contributions of the constituting p_z orbitals located at the chain of P atoms. The results for the parent dianions $[H_2P_4]^{2-}$ and $[(H_3Si)_2P_4]^{2-}$ reveal a general thermodynamic preference for the formation of the respective acyclic ions. The ionseparated cis and trans forms 10 and 11 and 14 and 15 are significantly more stable than the cyclic isomers 12, 13 or **16**, **17**. Further, the *cis*-tetraphosphenediides (**11** and **15**) are slightly more stable than the corresponding trans forms (10 and 14) (by 1.5 kcal/mol (11) or 1.3 kcal/mol (15), respectively; cf. Figures 11 and 12). Sodium coordination in Na₂(H₃Si)₂P₄ alters the energetic ordering of isomers dramatically (cf. Figure 13). First, we note that it increases the preference for the cis configuration significantly (i.e., cis-Na₂(H₃Si)₂P₄ **19** is 10.9 kcal/mol more stable than trans- $Na_2(H_3Si)_2P_4$ 18). Moreover, the sodium contact-ion pair 20, with its phosphanylcyclotriphosphane structure, becomes more stable than the trans-configured 18 and 21, with its cyclotetraphosphane structure. In contrast to the dianions $[H_2P_4]^{2-}$ and $[(H_3Si)_2P_4]^{2-}$, their neutral counterparts H_4P_4 and $H_2(H_3Si)_2P_4$ prefer the cyclic forms **24** and **28**. As shown in Figures 14 and 15, the ring compounds are much more stable than the acyclic isomers **22**, **23** and **26**, **27**. These theoretical findings agree very well with our experimental observations: the anionic disupersilylated tetraphosphenediide derivatives possess an acyclic unsaturated structure, whereas their neutral tetraphosphene derivatives undergo isomerization reactions to form cyclic tetraphosphanes (e.g., 6 and 9). We can, thus, relate these observations to general thermodynamic preferences inherent to the parent tetraphosphane framework. #### **Summary and Conclusion** In summary, we have shown that the tetraphosphenediides $M_2[1]$ (M = Li, Na, K) can be prepared from precursor silanides M[Si-t-Bu₃] (M = Li, Na, K) via P₄ degradation, whereas the tetraphosphenediides $M_2[1]$ (M = Rb, Cs) and Ba[1] are accessible by reaction of Na₂[1] with RbCl, CsF, and BaI₂, respectively. ³¹P NMR experiments reveal that, in THF, Na₂[1] adopts a cis configuration. However, treatment of Na₂[1] with 18-crown-6 leads to the formation of [Na(18crown-6)(thf)₂]₂[1] that possesses a trans configuration in the solid state. The ion-separated tetraphosphenediide [Na(18crown-6)(thf)₂]₂[1] was characterized by X-ray crystallography. Addition of AuI to Na₂[1] yields 1,3-diiodo-2,4disupersilyl-cyclotetraphosphane, which is an isomer of disupersilylated diiodotetraphosphene. A further isomer of disupersilylated tetraphosphene, the 3,5-disupersilyl-2,2-ditert-butyl-2-stanna-bicyclo[2.1.0^{1,4}]pentaphosphane that possesses a phosphanylcyclotriphosphane structure, was obtained by the reaction of Na₂[1] with t-Bu₂SnCl₂. In contrast to analogous nitrogen compounds that consist of N₄ chains in cis or trans configuration, neutral 2-tetraphosphenes of the type t-Bu₃SiRP-P=P-PR'Si-t-Bu₃, with covalent RP and R'P bonds, seem to be less stable. On the one hand, tetraphosphenes t-Bu₃SiRP-P=P-PR'Si-t-Bu₃ with bulky R and R' substituents undergo isomerization reactions with the formation of isolable phosphanylcyclotriphosphane and cyclotetraphosphane derivatives (e.g., $9 \text{ (R = R' = t-Bu}_2\text{Sn)}$); 6 (R = I, R' = I); Schemes 3 and 5), and on the other hand, decomposition of the protonated disupersilylated *cis*- and *trans*-tetraphosphene (R = H, R' = H) occurs in the formation of t-Bu}_3SiPH $_2$. In addition, the reactivity of Na $_2$ [1] toward the Lewis acids BH $_3$ and AlMe $_3$ has been studied by heteronucleus NMR spectroscopy and mass spectrometry. High-level quantum chemical calculations reveal that the acyclic cis and trans dianions of [HPPPPH]²⁻ and $[H_3SiPPPPSiH_3]^{2-}$, 10 and 11, as well as 14 and 15, respectively, are thermodynamically favored over the cyclic phosphanylcyclotriphosphane or tetracyclophosphane isomers. However, upon sodium coordination in Na₂(H₃Si)₂P₄, the preference for cis configuration increases significantly. In contrast to the corresponding dianions, the neutral cyclic isomers of H₄P₄ and H₂(H₃Si)₂P₄, **24**, **25**, **28**, and **29**, are in turn significantly more stable than the isomers 22, 23, 26, and 27 with their acyclic tetraphosphene units. It is interesting to note that the MOs of the silvlated tetraphosphene dianions 14 and 15, which are comparable with those of the ionseparated supersilylated tetraphosphenediide [1]²⁻ calculated at the HF/6-311G(d)//B3LYP/6-31G(d) level, show a highest occupied antibonding π * MO (HOMO). Therefore, the supersilylated tetraphosphene dianion shows promise as a non-innocent ligand for potentially redox-active transitionmetal complexes. ## **Experimental Section** **Quantum Chemical Calculations.** Quantum chemical calculations were carried out by means of the Gaussian 03 program. The thermochemical quantities for the different structures were calculated with the compound methods $G3^{35}$ and CBS-QB3, 36 as implemented in Gaussian 03. Relative energies ($E_{\rm rel}$) refer to 1 atm in kcal/mol. We verified the minimum nature of the isomers reported by inspection of the Hessian matrices computed as part of the G3 and CBS-QB3 compound methods (positive eigenvalues of the diagonalized Hessian matrices for all species reported). General Considerations. All experiments were carried out under dry argon or nitrogen using standard Schlenk and glovebox techniques. Alkane solvents were dried over sodium and freshly distilled prior to use. Toluene and THF were distilled from sodium/ benzophenone. C_6D_6 was dried over molecular sieves and stored under dry nitrogen. Li(thf)₃[Si-t-Bu₃], Na[Si-t-Bu₃], 19,22 and Na₂[1]¹⁴ were prepared according to published procedures. All other starting materials were purchased from commercial sources and used without further purification. NMR spectra were recorded on a Bruker AM 250, a Bruker DPX 250, a Bruker Avance 300, and a Bruker Avance 400 spectrometer. The ²⁹Si NMR spectra were recorded using the INEPT pulse sequence with empirically optimized parameters for polarization transfer from the *tert*-butyl substituents. Elemental analyses were performed at the microanalytical laboratories of the Universität Frankfurt. Mass spectrometry was performed with a Fisons VG Platform II, a Varian CH7, and a Kratos MS 80 RFA instrument. UV—vis absorption spectroscopy was carried out in THF using a Varian Cary 50 scan spectrophotometer. [Na(18-crown-6)(thf)₂]₂[1]. To a solution of Na₂[1] (2.0 mmol) in 20 mL of THF was added 18-crown-6 (0.54 g, 2.1 mmol) in one portion. The purple solution was stirred overnight. Slow evaporation of the solvent yielded the product as crystalline dark violet plates (0.58 g, 53%). ¹H NMR (THF- d_8 , internal TMS): δ 1.08 (br, t-Bu). ¹³C{¹H} NMR (THF- d_8 , internal TMS): δ 25.2 (br, CMe₃), 32.2 (br, CMe₃). ³¹P{¹H} NMR: (see Figures 2 and 3). ³⁷ 29 Si{¹H} NMR (THF- d_8 , external TMS): (see Figure 5). UV-vis: $\lambda_{\text{max}} = 494$ nm, 561 nm. **Li₂[1].** A solution of Li(thf)₃[Si-*t*-Bu₃] (3.30 mmol) in 6.5 mL of THF was added dropwise to a cooled solution of P_4 (1.50 mmol) in 15 mL of THF. The reaction solution was warmed up to room temperature. Slow evaporation of the solvent yielded the tetraphosphenediide Li₂[1] as crystalline purple blocks (57%). Several attempts to determine the structure failed. ¹H NMR (THF- d_8 , internal TMS): δ 1.06 (br, 54H, *t*-Bu). ¹³C{¹H} NMR (THF- d_8 , internal TMS): δ 25.0 (br, *C*Me₃), 32.1 (br, *C*Me₃). ³¹P{¹H} NMR: (see Figure 2). ³⁷ ²⁹Si{¹H} NMR (THF- d_8 , external TMS): δ 21.8 (m). Synthesis of the Tetraphosphenediides $M_2[1]$ (M = Rb, Cs) and Ba[1]. A flask was charged with alkali-metal or alkaline-earth-metal halides (RbCl: 0.120 g, 1.12 mmol; CsF: 0.064 g, 0.44 mmol; BaI₂: 0.062 g, 0.16 mmol) to which was added a solution of an equimolar amount of a 0.1 M solution of Na₂[1] in THF (Rb: 5.6 mL, Cs: 2.2 mL, Ba: 1.6 mL). After 48 h at room temperature, the products were obtained in solution. Filtration and concentration of the filtrate yielded the microcrystalline purple tetraphosphenediides. **Rb₂[1].** ¹H NMR (THF- d_8 , internal TMS): δ 1.09 (br, t-Bu). ¹³C{¹H} NMR (THF- d_8 , internal TMS): δ 25.3 (br, CMe_3), 32.2 (br, CMe_3). ³¹P{¹H} NMR: (see Figure 2). ²⁹Si{¹H} NMR (THF- d_8 , external TMS): δ 25.2 (m). An element ratio of Rb to P of 1:2.3 was determined by EDX spectrometry. Anal. Calcd for Rb₂[1](thf)₂ C₃₂H₇₀O₂P₄Rb₂Si₂: C, 45.87%; H, 8.42%. Found: C, 42.13%; H, 8.02%. Cs₂[1]. ¹H NMR (THF- d_8 , internal TMS): δ 1.08 (br,
t-Bu). ¹³C{¹H} NMR (THF- d_8 , internal TMS): δ 25.1 (br, CMe_3), 32.3 (br, CMe_3). ³¹P{¹H} NMR: (see Figure 2). ²⁹Si{¹H} NMR (THF- d_8 , external TMS): δ 22.8 (m). (ESI⁺) (%) (M = Cs₂[1](thf)₂) m/z: [M]⁺ 932 (<5), [M – Me]⁺ 917 (<5), [t-Bu₂MeSiPCsPPCsPSiMe-t-Bu₂]⁺ 697 (10), [Cs]⁺ 132 (100). An element ratio of Cs to P of 1:2.4 was determined by EDX spectrometry. Anal. Calcd for Cs₂[1](thf)₂ C₃₂H₇₀O₂P₄Cs₂Si₂: C, 41.20%; H, 7.56%. Found: C, 39.84%; H, 6.85%. **Ba[1].** ¹H NMR (THF- d_8 , internal TMS): δ 1.09 (br, t-Bu). ¹³C{¹H} NMR (THF- d_8 , internal TMS): δ 25.2 (br, CMe₃), 32.4 (br, CMe₃). ³¹P{¹H} NMR: δ 428.9, 19.0. ²⁹Si{¹H} NMR (THF- ⁽³⁴⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004. ⁽³⁵⁾ Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764. ⁽³⁶⁾ Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822. ⁽³⁷⁾ Iterative optimization of the simulated spectrum with the software SpinWorks 2.5.5 yields the shown coupling constants. Marat, K. *SpinWorks* 2.5.5; University of Manitoba: Winnipeg, MB, 2006. d_8 , external TMS): δ 24.3 (m). An element ratio of Ba to P of 1:4.3 was determined by EDX spectrometry. Anal. Calcd for Ba[1](thf)₂C₃₂H₇₀BaO₂P₄Si₂: C, 47.79%; H, 8.77%. Found: C, 45.14%; H, 8.28%. **Protonolysis of M**₂[1] (M = Li, Na, Rb, Cs) and Ba[1]. The tetraphosphenediides M₂[1] (M = Li, Na, Rb, Cs) and Ba[1] were treated with an excess of trifluoroacetic acid in THF (Li₂[1]: 0.5 mol, Na₂[1]: 2.0 mmol, Rb₂[1]: 0.1 mmol, Cs₂[1]: 0.1 mmol, Ba[1]: 0.1 mmol). As determined by ³¹P NMR spectroscopy, the tetraphosphenediides are converted into supersilyl phosphane t-Bu₃SiPH₂ and, up to now, not exactly identified polyphosphanes. The ³¹P signals of these polyphosphanes are very broad. By sublimation at 80 °C/0.01 mbar, pure t-Bu₃SiPH₂ was obtained as a waxy solid from the reaction of Na₂[1] with trifluoroacetic acid (yield 60%). *t*-Bu₃SiPH₂· ¹H NMR (C₆D₆, internal TMS): δ 0.94 (d, ¹ J_{PH} = 185.4 Hz, 2 H), 1.09 (d, ⁴ J_{PH} = 0.49 Hz, 3 *t*-Bu). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ 23.1 (d, ² J_{CP} = 5.86 Hz, *C*Me₃), 30.7 (d, ³ J_{PC} = 2.44 Hz, *CMe₃*). ³¹P NMR (C₆D₆, external H₃PO₄): δ -263.8 (t, ¹ J_{PH} = 185.4 Hz). ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ 24.1 (d, ¹ J_{PP} = 33.2 Hz). MS (EI) *m/z*: [M]⁺ 232. Anal. Calcd for C₁₂H₂₉PSi: C, 62.01%; H, 12.58%. Found: C, 62.24%; H, 12.72%. Remark: A mixture of sodium phosphides Na₂[1], Na₄[2], Na₃[3], Na[4], Na₂[5], Na[PHSi-*t*-Bu₃], and Na₂[PSi-*t*-Bu₃] in THF was titrated with trifluoroacetic acid (³¹P NMR spectroscopic control). In the³¹P NMR spectra, the signals that can be assigned to Na₂[PSi-*t*-Bu₃] disappeared first, followed by those that can be assigned to the saturated phosphanides Na[PHSi-*t*-Bu₃], Na₄[2], Na₃[3], and Na₂[5], and, last, those that can be assigned to the unsaturated phosphides Na₂[1] and Na[4]. Oxidation of M₂[1] (M = Li, Na, Rb, Cs) and Ba[1]. Oxidation by equimolar amounts of TCNE and THF solutions of the tetraphosphenediides M₂[1] (M = Li, Na, Rb, Cs) and Ba[1] yielded the bicyclo[1.1.0]tetraphosphane (t-Bu₃Si)₂P₄ quantitatively, as determined by NMR spectroscopy (Li: 0.5 mol, Na: 2.0 mmol, Rb: 0.1 mmol, Cs: 0.1 mmol, Ba: 0.1 mmol). The bicyclo[1.1.0]tetraphosphane (t-Bu₃Si)₂P₄ could be freed of byproduct by removal of the THF solvent, extraction with pentane, and filtration. **Bicyclo[1.1.0]tetraphosphane** (*t*-**Bu**₃**Si**)₂**P**₄. ¹H NMR (C₆D₆, internal TMS): δ 1.21 (br, *t*-Bu). ¹³C{ ¹H} NMR (C₆D₆, internal TMS): δ 26.3 (br, *C*Me₃), 31.7 (br, *CMe*₃). ³¹P{ ¹H} NMR (C₆D₆, external H₃PO₄): δ −139.1 (t, P−Si-*t*-Bu₃. ¹ J_P = 170.5 Hz); δ −334.4 (t, PP₃, ¹ J_{PP} = 170.5 Hz). ²⁹Si{ ¹H} NMR (C₆D₆, external TMS): δ 16.4 (m, Si-*t*-Bu₃). MS (EI) *m*/*z*: [M]⁺ 251. Anal. Calcd for C₂₄H₅₄P₄Si₂: C, 55.14%; H, 10.41%. Found: C, 54.66%; H, 10.32%. Reaction of Na₂[1] with BH₃. A 1.0 M solution of BH₃ (1.5 mmol) in 1.5 mL of THF was added dropwise to 7 mL of a 0.1 M solution of Na₂[1] (0.7 mmol) in THF at -80 °C. The purple solution was stirred for 1 h at -80 °C. From this solution, ³¹P NMR spectra were measured at -80 and -50 °C and at room temperature, as shown in Figure 4. The reaction solution was slowly warmed up to room temperature. After 2 days, the color had changed from purple to yellow-orange, and, in the ³¹P NMR spectrum, the signals of 8 had disappeared completely. In the ¹¹B NMR spectrum, a main signal occurred that can be assigned to Na[BH₄], and, in the ³¹P NMR spectrum of this reaction mixture, new resonances in the range of saturated P atoms were found. ¹¹B NMR (THF-d₈, external BF₃•OEt₂): δ -41.5 (quint, Na[BH₄], ${}^{1}J_{BH}$ = 81.0 Hz), -36.5 (br m, 7(BH₃)₂). ³¹P{¹H} NMR: (see Figure 3). ³⁷ After 2 days, ³¹P NMR (THF- d_8 , external H₃PO₄): $\delta -30.1$ (m, $(t-Bu_3Si)_3P_7$), -113.0 $(m, (t-Bu_3Si)_3P_7), -177.4 (m, (t-Bu_3Si)_3P_7), -139.1 (t, (t-Bu_3Si)_2P_4)$ ${}^{1}J_{PP} = 170.5 \text{ Hz}$, $-334.4 \text{ (t, } {}^{1}J_{PP} = 170.5 \text{ Hz}$), -102.3 (m), -158.3 m(br m), -188.0 (br m), -205.6 (m). In addition, we made a further experiment (BH₃: mmol, Na₂[1]: 0.7 mmol in mL of THF) to study the reaction of Na₂[1] with BH₃ by mass spectrometry. In the ESI⁻ mass spectrum, we found peaks from [t-Bu₃SiP(BH₃)PPHP(BH₃)Si-t-Bu₃]⁻. At first, obviously, the adduct $7(BH_3)_2$ is formed by the reaction between Na₂[1] and BH₃. Therefore, the signals of the ³¹P NMR spectrum at -50 °C in Figure 4 can be assigned to the adduct $7(BH_3)_2$. The ESI⁻ mass spectrum of the reaction solution reveals a further peak that can be assigned to [M + H]⁻ of $8(THF)_2$. **7(BH₃)₂.** ³¹P NMR (THF-*d*₈, external H₃PO₄): (see Figure 4). (ESI) (%) *m/z*: 553.6 (14.6), 552.6 (36.6), 551.6 (100), 550.6 (72 interference with peaks of [*t*-Bu₃SiP(BH₃)PPP(BH₃)Si-*t*-Bu₃]⁻ and [*t*-Bu₃SiP(BH₃)PPP(BH₂)Si-*t*-Bu₃]⁻), 549.6 (93 interference with peaks of [*t*-Bu₃SiP(BH₃)PPP(BH₃)Si-*t*-Bu₃]⁻ and [*t*-Bu₃SiP(BH₃)-PPP(BH₂)Si-*t*-Bu₃]⁻, [*t*-Bu₃SiP(BH₃)PPHP(BH₃)Si-*t*-Bu₃]⁻), calcd for [*t*-Bu₃SiP(BH₃)PPHP(BH₃)Si-*t*-Bu₃]⁻ 553.4 (12.0), 552.4 (35.2), 551.3 (100), 550.4 (50.3), 549.4 (6.2), 548.6 (50.2 interference with apeak of [*t*-Bu₃SiP(BH₃)PPP(BH₂)Si-*t*-Bu₃]⁻), calcd for [*t*-Bu₃SiP(BH₃)-PPP(BH₃)Si-*t*-Bu₃]⁻ 552.4 (12.0), 551.4 (35.2), 550.3 (100), 549.4 (50.3), 548.4 (6.2), 547.5 (10.3), [*t*-Bu₃SiP(BH₃)PPP(BH₃)Si-*t*-Bu₃]⁻, calcd for [*t*-Bu₃SiP(BH₃)PPP(BH₂)Si-*t*-Bu₃]⁻ 553.4 (12.0), 552.4 (35.2), 551.3 (100), 550.4 (50.3), 547.4 (6.2). **8.** ³¹P NMR (THF- d_8 , external H₃PO₄): δ 409.7, -35.0 (m, $^1J_{P(2)P(3)} = -507.0$ Hz, $^1J_{P(1)P(2)} = -429.9$ Hz, $^2J_{P(1)P(3)} = -35.4$ Hz, $^3J_{P(1)P(4)} = 188.9$ Hz, see Figure 4).³⁷ ¹¹B NMR (THF- d_8 , external BF₃·OEt₂): δ -36.5 (br m, **7**(BH₃)₂). (ESI⁻) (%) (M = **8**(thf)₂) m/z: [M + H]⁻ 706.6 (10), 705.6 (34.8), 704.6 (48.4), 703.5 (100), 702.6 (34.9), calcd for [M + H]⁻ 706.4 (4), 705.4 (16.3), 704.4 (44.8), 703.4 (100), 702.4 (22.2). Reaction of Na₂[1] with AlMe₃. A 2.0 M solution of AlMe₃ (1.0 mmol) in 0.5 mL of THF was added dropwise to 6.2 mL of a 0.08 M solution of Na₂[1] in THF at -100 °C. The purple solution was stirred for 4 h at -100 °C. The reaction solution was warmed up to room temperature overnight. The ³¹P NMR spectrum of this solution showed a signal that can be assigned to 7(AlMe₃)₂ (Figure 2). After 1 week, the color had changed from purple to yelloworange, and, in the ³¹P NMR spectrum, the signal of 7(AlMe₃)₂ had disappeared completely. The ³¹P NMR spectrum of this reaction mixture revealed new resonances in the range of saturated P atoms. After 2 days, ³¹P NMR (THF- d_8 , external H₃PO₄): δ -87.7 (s, t-Bu₃SiPMe₂), -164.1 (d, t-Bu₃SiPHMe), -136.3(m), -184.2 (m), -212.5 (m), -231.4 (m)). In addition, we made a further experiment (AlMe3: mmol, Na2[1]: 0.7 mmol in mL of THF) to study the reaction of Na₂[1] with AlMe₃ by mass spectrometry. We found peaks in the ESI⁻ mass spectrum that can be assigned to the adduct $7(AlMe_3)_2$. **7(AlMe₃)₂.** ³¹P NMR (THF- d_8 , external H₃PO₄): δ 409.2 (m, ${}^1J_{\text{P(2)P(3)}} = -509.8 \text{ Hz}, {}^1J_{\text{P(1)P(2)}} = -434.3 \text{ Hz}, {}^2J_{\text{P(1)P(3)}} = -3.7 \text{ Hz}, {}^3J_{\text{P(1)P(4)}} = 162.4 \text{ Hz}, \text{ see Figure 5}). (ESI^-) (%) (M =$ **7**(AlMe₃)₂(thf)₅) <math>m/z: [M]⁻ 1074.7 (68), 1073.9 (100), 1072.7 (90), calcd for [M]⁻ 1074.6 (29), 1073.7 (66), 1072.6 (100). **Cyclotetraphosphane 6.** A solution of Na₂[1] (1.5 mmol) in 15 mL of THF was added to solid AuI (0.49 g, 1.52 mmol). The redbrown solution was stirred overnight. After removal of the solvent under reduced pressure, the residue was extracted with toluene and filtered. Slow evaporation of the solvent yielded the
product as yellow crystalline plates (47%). ¹H NMR (C₆D₆, internal TMS): δ 1.22 (br, *t*-Bu). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ 25.4 (br, *C*Me₃), 32.8 (br, *CMe₃*). ³¹P{¹H} NMR): δ 149.0 (t, ¹ J_{PP} = 226.7 Hz), -34.9 (t, ¹ J_{PP} = 226.7 Hz). ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ 21.5 (m). MS (MALDI) (%) m/z: [M]⁺ 776 (60), [M – $Si-t-Bu_3$ ⁺ 577 (100). Anal. Calcd for $C_{24}H_{54}I_2P_4Si_2$: C, 37.12%; H, 7.01%. Found: C, 37.31%; H, 7.18%. Phosphanylcyclotriphosphane 9. To a solution of Na₂[1] (1.5 mmol) in 15 mL of THF was added t-Bu₂SnCl₂ (0.46 g, 1.5 mmol) in one portion. The solution quickly became cloudy, and the color changed from purple to vellow-orange. After 3 h, volatiles were removed in vacuo, and the residue was extracted with pentane (10 mL). The extract was filtered. Slow concentration of the filtrate led to the deposition of the product as a microcrystalline orange solid (64%). ¹H NMR (C₆D₆, internal TMS): δ 1.30 (br, 54H, Sit-Bu₃), 1.28 (br, 18H, Sn-t-Bu₂). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ 22.6 (br, SnCMe₃), 23.0 (br, SnCMe₃), 25.5 (br, PSiCMe₃), 26.3 (br, SnPSiCMe₃), 30.1 (br, SnCMe₃), 30.6 (br, SnCMe₃), 31.8 (br, $PSiCMe_3$), 32.3 (br, $SnPSiCMe_3$). $^{31}P\{^{1}H\}$ NMR (C_6D_6 , external TMS): $^{37} \delta - 105.3 \text{ (m, } ^{1}J_{P(1)P(4)} = -280.2 \text{ Hz, } ^{2}J_{P(2)P(4)} = 74.6 \text{ Hz,}$ ${}^{2}J_{P(3)P(4)} = 16.8 \text{ Hz}, {}^{1}J_{119\text{SnP}(4)} = 946.0 \text{ Hz}, {}^{1}J_{117\text{SnP}(4)} = 905.0 \text{ Hz},$ P(4), -124.8 (m, ${}^{1}J_{P(1)P(2)} = -238.7$ Hz, ${}^{1}J_{P(1)P(3)} = -160.4$ Hz, ${}^{2}J_{119\text{SnP}(1)} = 197.1 \text{ Hz}, {}^{2}J_{117\text{SnP}(1)} = 198.8 \text{ Hz}, P(1)), -180.4 \text{ (m,}$ ${}^{1}J_{P(2)P(3)} = -147.9 \text{ Hz}, {}^{1}J_{119\text{SnP}(3)} = 628.8 \text{ Hz}, {}^{1}J_{117\text{SnP}(3)} = 600.6$ Hz, P(3)), -198.2 (m, ${}^{2}J_{119SnP(2)} = 122.0$ Hz, ${}^{2}J_{117SnP(2)} = 121.2$ Hz, P(2)). ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ 19.1 (dm, ¹ J_{PSi} = 95.1 Hz, PSi-t-Bu₃), 26.4 (dm, ${}^{1}J_{PSi}$ = 89.9 Hz, SnPSi-t-Bu₃). ¹¹⁹Sn{¹H} NMR (C₆D₆, external TMS): δ 76.0 (m, ¹ $J_{119\text{SnP(5)}} = 946.0$ Hz, ${}^{1}J_{119\text{SnP(3)}} = 628.8 \text{ Hz}$, ${}^{2}J_{119\text{SnP(2)}} = 122.0 \text{ Hz}$, ${}^{2}J_{119\text{SnP(1)}} = 197.1$ Hz). (EI) (%) m/z: [M – t-Bu₃Si – $2C_4H_8$]⁺ 445 (100), 443 (72), 447 (41), 441 (34), 446 (30), 442 (25), 449 (17), 448 (8), calcd for $[M - t-Bu_3Si - 2C_4H_8]^+$ 445 (100), 443 (75.1), 447 (18), 441 (42.0), 446 (30), 442 (18), 449 (17), 448 (3). Anal. Calcd for C₃₂H₇₂P₄Si₂Sn: C, 50.86%; H, 9.60%. Found: C, 49.22%; H, 9.81%. **X-ray Structure Determination.** The very large R values in the structure determination of [Na(18-crown-6)(thf)₂]₂[1] are a result of the loose packing of the molecules. The large displacement parameters (U values of about 0.2) show the t-Bu groups and the crown ether rings to be disordered. The scattering power of the crystal is limited due to the large thermal motion. We tried several disorder models, but with no significant improvement of the results. The unit cell also contains two symmetry-related, solvent-accessible areas of 620 Å³ each, corresponding to 22% of the unit cell volume, where no atoms were found. The residual density in these areas did not exceed 1 e/ $Å^3$. Thus, the unit cell is expected to contain a large amount of solvate, though none was observable. The SQEEZE option in program PLATON was not used. The figures of merit are not satisfactory, but the structure determination unequivocally confirms the molecular structure and allows its discussion. Data collections were performed on a Stoe-IPDS-II diffractometer and Siemens CCD three-circle diffractometer, with empirical absorption correction using MULABS³⁸ and SADABS.³⁹ The structures were solved with direct methods⁴⁰ and refined against F² by full-matrix least-squares calculations with SHELXL-97.⁴¹ Hydrogen atoms were placed on ideal positions and refined with fixed isotropic displacement parameters using a riding model. CCDC reference numbers: 690493 ([Na(18-crown-6)(thf)₂]₂[1]) and 690500 (**6**). Acknowledgment. We are grateful to the Goethe-Universität Frankfurt for financial funding, and the Chemetall GmbH for a gift of tert-butyl lithium. A.L. and G.M. wish to thank the Fonds der Chemischen Industrie (FCI) and the Bundesministerium für Bildung and Forschung (BMBF) for Ph.D. grants. Computer time provided by the CSC Frankfurt and the HLR Darmstadt is acknowledged. Supporting Information Available: Table of X-ray parameters, atomic coordinates, displacement parameters, and bond distances and angles. This material is available free of charge via the Internet at http://pubs.acs.org. #### IC8016003 ⁽³⁸⁾ Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33. ⁽³⁹⁾ Sheldrick, G. M. SADABS; University of Göttingen: Göttingen, Germany, 2000. ⁽⁴⁰⁾ Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467. Sheldrick, G. M. SHELXL-97: A Program for the Refinement of Crystal Structures; University of Göttingen: Gottingen, Germany, 1997.